In terms of boundary condition effects, the order of sensitivity

In terms of boundary condition effects, the order of sensitivity with imperfection [28] can be arranged as clamped-simply support (CS) > clamped-clamped (CC) > clamped-free end (CF) while simply support-simply support (SS) > CS for hybrid/sandwich laminates and CS > SS for laminates. Under pressure loading, the deflections thorough of both laminate and sandwich laminate increase corresponding with the increment of extent of imperfection. The contrast is observed for sandwich laminate under thermal loading. Besides, it is to be noted that the effect of imperfection is much more critical for structures under pressure loading compared to both potential and thermal loading [25, 26]. Furthermore, the sensitivity with imperfection is more obvious in angle-ply laminates with lower ply angle under pressure and potential loading as well as in intermediate ply angle for those under thermal loading [26].

In addition to shear slip, the weak bonding modeling which includes a normal opening had been investigated by Shu and Soldatos [9], Soldatos and Shu [31], Williams [32], and Williams and Addessio [33] considering two-layer cross-ply laminates where their effects on the through-thickness midpoint deflection were studied. In this coupled condition, the thickness of laminate in relation to its surface dimensions plays a dominant role. Taking into account this particular parameter, the sensitivity of the plate, with different length-to-thickness ratios, to a complete debonding was explored in terms of midpoint deflection in Williams [32] and Williams and Addessio [33].

Moreover, the influence of different extents of bonding, ranging from a perfect bonding to complete debonding, on the midpoint bending response of laminates with S = 4, 10, and 100 had been highlighted in Soldatos and Shu [31]. Such an effect had also been examined in two-layer laminates with a symmetric layup [9, 31, 34�C36] and an antisymmetric layup [37]. With regard to the symmetric Carfilzomib laminate, Liu et al. [35, 36] and Soldatos and Shu [31] had reported the midpoint bending response of plate under various combinations of axial and normal imperfection, whereas a uniform degradation had been assumed in both directions in Soldatos and Shu [31]. In much similar veins, Fu et al. [38] compared in addition to intraply damage the sensitivity of the layers number of plate (N = 2, 4, and 6) to weak bonding, assessed in the merit of midpoint deflection, where a greater severity was found in thicker plates. From the standpoint of fiber orientation, Kam et al. [39] studied interfacial degeneration effects on the bending response of two-layer laminates, in which a generalization polar plot that incorporates numerous affecting parameters was constructed.

Leave a Reply

Your email address will not be published. Required fields are marked *

*

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>