Meanwhile, the atomic percentage content of titanium in the tooth shape particles is 12.14%; it is almost consistent with the experimental process in which the molar ratio of titanium and zinc is 1 to 10. It manifests that titanium is almost utterly doped in the ZnO. The crystalline characters of the samples are checked by selected area electron diffraction. Figure 5(a3) shows that samples synthesized from zinc acetate have certain crystalline state, and the crystalline grain size is slightly larger. The (101), (102), and (112) crystal #PXD101 ic50 randurls[1|1|,|CHEM1|]# faces are detected. This is consistent with the XRD. When the raw material is zinc sulfate, the diffraction pattern displays the ( 10)
lattice plane of Zn (SO4)2 · 3Zn (OH)2 and (101), (102), and (201) lattice
planes of ZnO (Figure 5(b2)). The result is consistent with the XRD. When the raw material is zinc nitrate, (101), (102), and (201) crystal planes of ZnO are detected, and the diffraction rings are obscure (Figure 5(c3)). It demonstrates that the samples are composed of amorphous and crystalline forms. The SAED pattern of the samples prepared from zinc chloride displays the (002), (101), (102), (110), (103), (200), and (201) crystal planes of ZnO (Figure 5(d3)). It indicates that the samples are hexagonal phase. Besides, there are some scattered bright spots in the diffraction pattern. It demonstrates that the grain size is slightly larger. Antibacterial properties of titanium-doped ZnO powders Tables 1 and 2 both show that the antibacterial activities of titanium-doped ZnO powders synthesized from selleck inhibitor different zinc salts is different. The antibacterial activities of the powders are optimal, which is prepared from zinc chloride, and their minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) are lower than 0.25 g L−1. Moreover, the antibacterial properties of the powders synthesized from zinc nitrate are slightly
poorer than that of zinc chloride and are better than that of zinc acetate and zinc sulfate. Meanwhile, the antibacterial activities of the powders against E. coli are better than S. aureus. Table 1 Colony count of E. coli after antibacterial activities by titanium-doped ZnO powders Zinc salt Powder concentration (g/L) 0 0.25 0.5 0.75 1.0 1.5 2.0 2.5 Zn (Ac)2 1.25 × 108 2.1 × 107 1.95 × 107 1.75 × 107 1.2 × 107 3.85 × 106 Methane monooxygenase 2.9 × 103 1.65 × 103 ZnSO4 1.1 × 107 9.75 × 106 5.3 × 106 2.95 × 105 5.6 × 104 1.6 × 104 7.65 × 103 Zn (NO3)2 2.15 × 107 1.9 × 107 1.65 × 107 1.6 × 107 3.35 × 105 2.8 × 103 0 ZnCl2 3.05 × 104 6.55 × 103 3.9 × 103 2.5 × 103 2.3 × 103 2.0 × 103 0 The initial bacterial colony count is 8.75 × 105 CFU/mL. Table 2 Colony count of S. aureus after antibacterial activities by titanium-doped ZnO powders Zinc salt Powder concentration (g/L) 0 0.25 0.5 0.75 1.0 1.5 2.0 2.5 Zn (Ac)2 1.95 × 108 5.25 × 107 5.2 × 107 4.0 × 107 3.4 × 107 3.0 × 107 4.15 × 105 2.1 × 103 ZnSO4 8.85 × 107 8.