Taken together, we generated a recombinant HCMV that constitutes a useful tool
not only to dissect the in vivo dynamics of pp71 subnuclear localization more precisely but also to explore new features of this viral transactivator.”
“Ethanol exposure during pregnancy is one of the major causes of mental retardation in western countries by inducing fetal-alcohol-like-syndromes. Red wine is known to contain ethanol but also compounds with putative antioxidant properties. It has also been shown that nerve growth factor (NGF) and brain derived neurotrophic factor (BDNF) are severely affected by ethanol during prenatal and postnatal life. The aim of the current study was to investigate in male CD1 mice brain alterations in NGF and BDNF due to chronic early exposure to ethanol solution (11 vol%) or to red wine at the same alcohol concentration starting from 60 days before pregnancy up to pups weaning. Data revealed no differences Ferrostatin-1 mouse selleck chemical between groups of dams in pregnancy duration, neither in pups delivery, pups mortality
and sex ratio. Data also showed that adult animals exposed to only ethanol had disrupted levels of both NGF and BDNF in the hippocampus and other brain areas. This profile was associated with impaired ChAT immunopositivity in the septum and Nuclei Basalis and with altered cognition and emotional behavior. Quite interestingly mice exposed to red wine had no change in the behavior or in ChAT immunopositivity but a decrease in hippocampal BDNF and a mild NGF decrease in the cortex. Also NGF-induced neuritic outgrowth in PC-12 cells was still present when exposed to
red wine but not when exposed to ethanol solution only. Data suggest differences in ethanol-induced neurotoxicity between red wine and ethanol solution only. (C) 2008 Elsevier Inc. All rights reserved.”
“Foot-and-mouth disease virus (FMDV), a member of the Picornaviridae, is a pathogen of cloven-hoofed animals and causes a disease of major economic importance. Picornavirus-infected cells show changes in cell morphology and rearrangement of cytoplasmic membranes, which are a consequence of virus replication. We show here, by confocal immunofluorescence and electron microscopy, that the changes in morphology of FMDV-infected acetylcholine cells involve changes in the distribution of microtubule and intermediate filament components during infection. Despite the continued presence of centrosomes in infected cells, there is a loss of tethering of microtubules to the microtubule organizing center (MTOC) region. Loss of labelingfor gamma-tubulin, but not pericentrin, from the MTOC suggests a targeting of gamma-tubulin (or associated proteins) rather than a total breakdown in MTOC structure. The identity of the FMDV protein(s) responsible was determined by the expression of individual viral nonstructural proteins and their precursors in uninfected cells.