In addition, utilization of 4-ABS as sole nitrogen source was examined by growing mutants in PB medium with 3 mM of 4-ABS and gluconate. After 5 days of incubation with shaking at 150 r.p.m., growth was quantified by measuring A600 nm. Cells were grown in PBN medium supplemented with 5 mM of gluconate and 4-ABS. Samples were withdrawn every 48 h, filter sterilized and stored at
−20 °C selleck for subsequent analysis. For thin layer chromatography (TLC) analysis, 7.5 μL of sample was spotted onto a C18 RP TLC plate (Merck). The plate was allowed to dry and developed in mobile phase of butanol–propanol–acetic acid–water at 8 : 4 : 1 : 1 (Feigel & Knackmuss, 1988). HPLC analysis was performed using Waters 600 equipped with a 4.6 × 250 mm Zorbax SB-Aq column (Agilent, Santa Clara, CA). The mobile phase consisted of 98% water, 1% methanol and 1% phosphoric acid (85%) at a flow rate of 1.0 mL min−1. Detection was carried out at 230 nm. 4-Sulfocatechol standard was synthesized according to published method (Saito & Kawabata, 2006). Chromogenic detection of diphenolic intermediate in catabolism of 4-ABS was done by growing cells on nutrient agar
supplemented with 50 μg mL−1p-toluidine and 0.5 mM FeCl3 (Parke, 1992). To complement RK40, the DNA region spanning phthalate dioxygenase-like gene and its putative promoter was amplified from wild-type PBC with Benzatropine primers PDOF 5′-TACTTGCCGGTCTCGTTCG-3′ and PDOR 5′-GTTCGGGGGTGTGCAGTC-3′, cloned into pGEM-T Easy vector (Promega) and Autophagy inhibitor order subcloned as an EcoRI fragment into pBBR1MCS-5 (Kovach et al., 1995) to give pHG5. A similar approach was applied to RK32 complementation using primers DEHF 5′-GTTGAGACGCTCGTTGACC-3′ and DEHR 5′-TTTGCCTGAGAAATGTGTCG-3′ to amplify the ORFs of transposase and putative dehydrogenase to give pHG6. Plasmids were transformed into mutants via electroporation. Oxygen uptake was measured using a Clark-type oxygen electrode (YSI 5905, Yellow Springs Instruments). Cells
were pregrown in 20 mL NB medium, harvested by centrifugation and grown in 50 mL 0.5 × NB medium with 5 mM 4-ABS for 36 h to induce 4-aminobenzenesulfonate 3,4-dioxygenase activity. Cells were then harvested, washed twice with 25 mM potassium phosphate buffer, pH 7.0, and resuspended in the same buffer containing 1 mM 4-ABS (OD600 nm of 0.15–0.2). Oxygen uptake was measured polarographically at 30 °C for 2 h. DNA sequences of insertion site in RK1, RK23, RK32 and RK40 were deposited in EMBL Nucleotide Sequence Database and assigned accession numbers FR720595, FR720597, FR720598 and FR720599, respectively. From three different electroporation experiments, approximately 10 000 kanamycin-resistant colonies were obtained, representing an average transformation efficiency of 1.7 × 105 CFU μg−1 transposon.