erubescens, the latter being widely accepted for the genus Mesoph

erubescens, the latter being widely accepted for the genus Mesophyllum. The addition of M. sphaericum

as new maërl-forming species suggests that European maërl beds are more biodiverse than previously understood. “
“The filamentous, colonial cyanobacterium Trichodesmium has six well-described species, but many more names. Traditional classification was based on field samples using morphological characteristics such as cell width and length, gas vesicle distribution, and colony morphology. We used the Woods Hole Trichodesmium culture collection to identify 21 cultured strains to species using cell morphology; phycobiliprotein absorption spectra; and sequences of the 16S rRNA gene, the 16S–23S internal transcribed spacer (ITS), and the heterocyst differentiation BTK inhibitor cell line gene hetR. We compared our results to previous studies of field specimens and found similar clades, though not all phylogenetic groups were represented in culture. Our culture collection represented two of the four major clades of Trichodesmium: clade I, made up of Trichodesmium thiebautii Gomont,

Trichodesmium tenue Wille, Katagnymene spiralis Lemmerm., and Trichodesmium hildebrandtii Gomont; and clade III, consisting of Trichodesmium erythraeum Ehrenb. and Trichodesmium contortum Wille. These clades were genetically coherent with similar phycobiliprotein composition, but morphologically NSC 683864 上海皓元 diverse. In the continual revision of cyanobacterial taxonomy, genetic and biochemical information is useful and informative complements to morphology for the development of a functional classification scheme. “
“Many of the genes that control photosynthesis are carried in the chloroplast. These genes differ among species. However, evidence has yet to be reported revealing the involvement of organelle genes in the initial stages of plant speciation. To elucidate the molecular basis of aquatic plant speciation, we focused on the unique plant species

Chara braunii C. C. Gmel. that inhabits both shallow and deep freshwater habitats and exhibits habitat-based dimorphism of chloroplast DNA (cpDNA). Here, we examined the “shallow” and “deep” subpopulations of C. braunii using two nuclear DNA (nDNA) markers and cpDNA. Genetic differentiation between the two subpopulations was measured in both nDNA and cpDNA regions, although phylogenetic analyses suggested nuclear gene flow between subpopulations. Neutrality tests based on Tajima’s D demonstrated diversifying selection acting on organelle DNA regions. Furthermore, both “shallow” and “deep” haplotypes of cpDNA detected in cultures originating from bottom soils of three deep environments suggested that migration of oospores (dormant zygotes) between the two habitats occurs irrespective of the complete habitat-based dimorphism of cpDNA from field-collected vegetative thalli.

Leave a Reply

Your email address will not be published. Required fields are marked *

*

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>