The timolol study included 213 patients who were randomly assigned to receive placebo or timolol, a nonselective beta-blocker. At baseline clinical history, physical examination including body weight, blood tests, upper gastrointestinal endoscopy, abdominal ultrasonography, and HVPG measurement were performed. Patients were followed at 1 and 3 months after random Midostaurin molecular weight assignment and then every 3 months until the primary endpoint of the study (development of small varices observed in two consecutive endoscopies,
large varices, or variceal hemorrhage), the secondary endpoint (death or liver transplantation), or until the end of selleckchem the study in September 2002. Eighty-four patients developed the primary endpoint of the trial, without any differences between timolol or placebo.15 Of these, 62 had not developed clinical decompensation
(ascites, encephalopathy, or variceal hemorrhage) prior to development of the primary endpoint and, in a subsequent study,2 their follow-up was completed regarding clinical decompensation until the end of the study (September 2002). This database, which therefore included a complete follow-up of all patients until September 2002, was used for the present study. Because height was not among the variables included MCE in the original dataset, we retrieved this information from the clinical records in order to calculate the body mass index (BMI). Data on height was available in 161 of the 213 patients. These 161 patients constitute the object of the present study. BMI was calculated as weight in kilograms/height in meters squared. According to the World Health Organization and the US Department of Health and Human Services,16,
17 the following scale of BMI was used to classify the patients: underweight = BMI <18.5 kg/m2; normal weight = BMI 18.5-24.9 kg/m2; overweight = BMI 25-29.9 kg/m2; obese = BMI >30 kg/m2. Statistical analysis was performed using SPSS 16.0 statistical package (Chicago, IL). All results are expressed as frequencies, median, and range or as mean ± standard deviation (SD). Comparisons between BMI classes were done by chi-square test or Kruskal-Wallis test when appropriate for frequencies; analysis of variance (ANOVA) and Student’s t test were used for continuous variables; Kruskall-Wallis H test was used to assess differences in numerical variables among ordinal categories (normal BMI, overweight, and obese). Linear regression was used to evaluate the presence of a linear association between continuous variables. Correlations were performed using Pearson’s test.