“Background In most agricultural soils, nitrogen (N) is th

“Background In most agricultural soils, nitrogen (N) is the main limiting nutrient and, accordingly, it is often supplied to crops as chemical fertilizers. Significant losses of N-fertilizers occur either by leaching—resulting in eutrophication of rivers, lakes, aquifers— or by denitrification, contributing to global warming

[1]. However, estimates indicate that up to 60% of the N needs of legume crops may be obtained from Poziotinib in vitro the biological nitrogen fixation (BNF) process [2, 3], with significant economic benefits to farmers while mitigating environmental impacts. Common bean (Phaseolus vulgaris L.) is the most important food legume in South and Central America and in East Africa. It can establish symbiotic relationships with a variety of described and still-to-be-described

rhizobial species [4]. An important limitation to the BNF process involving common bean is the high genetic instability of the symbiotic plasmid of the rhizobial strains, as reported for Rhizobium phaseoli and Rhizobium etli. This instability has been attributed to genomic rearrangements, plasmid deletions and mutations, which are intensified under stressful conditions [5, 6]. Abiotic stresses such as high soil temperatures, in addition to water deficit, salinity and soil acidity comprise learn more the main factors causing genetic instability [7, 8]. Among common-bean rhizobia, Rhizobium tropici is recognized for its tolerance of environmental stresses, including high temperatures [7–9]. Within this species, strain PRF 81 (= SEMIA 4080) is known for the high capacity in fixing N2, competitiveness against other rhizobia, and tolerance of environmental stresses; it has been used in commercial inoculants in Brazil since 1998 [10, 11]. More information about the strain, including Fenbendazole genetic characterization, is given elsewhere [10, 12, 13]. The strain is deposited at the “Diazotrophic and Plant Growth Promoting Bacteria Culture Collection” at Embrapa Soja ( http://​www.​bmrc.​lncc.​br).

Mechanisms of response to stresses are usually highly conserved among bacterial species, and designed for rapid adaptation to environmental and metabolic changes. These conserved responses comprise the expression of molecular chaperones, such as DnaK (and its assistants DnaJ and GrpE), GroEL (and its assistant GroES), and also of small heat-shock proteins [14]. All are polypeptide-binding proteins implicated in protein folding, protein targeting to membranes, renaturation, and in the control of protein-protein interactions. In addition to conserved responses, some bacterial species also possess specific metabolic adaptations to stressful conditions. Recently, a draft genome of R. tropici strain PRF 81 revealed several probable genes that may be related to its outstanding symbiotic and saprophytic abilities and also its adaptability to environmental stresses [12]; elucidation of the whole genome of the strain is now in progress ( http://​www.​bnf.​lncc.​br).

Leave a Reply

Your email address will not be published. Required fields are marked *


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>